Closures

aka... blocks!

“‘STRAIGHT & FORWARD?”: 1) take a chunk of code,
2) enclose it in a closure!

// this is some code...
// Well... this is a closure !!!|
me.events = result; i
me.orderedMonthKeys = order;

[m&-tab1EView FEIOHdData]; // some Code:

me.events = result;
me.orderedMonthKeys = order;
[me.tableView reloadDatal;

POWER TO THE
CLOSURES!

™ - They capture the state !!!
(that is: local variables)

- Not only you can store a

// some code:

me.events = result;
me.orderedMonthKeys = order; chunk of code
[me.tableView reloadDatal; - But also you can preserve

access to the all SCOPE !!!

— (void)viewDidLoad

{

__weak typeof(self) weakSel

[super viewDidLoad];

self.loadTableBlock s/~(BOOL success, NSDictionary xresult, NSArray xorder) {

[[NSOperationQueue mainQueue] addOperationWithBlock:
g |
// some code:
weakSelf.events = result;
weakSelf.orderedMonthKeys = order;
[weakSelf.tableView reloadDatal;

[self getTheEventsWithComponents: onents
withCompletign:self.loadTableBlock];

Hi
i

This is another method!!!

Another method => Another scope

—(void)yearPickerViewControllerDidFinishPickingYear: (NSString *)year {

NSDatex today = [NSDate new];
NSCalendarx calendar = [NSCalendar currentCalendar];

NSDateComponents* components = [calendar components:NSCalendarUnitYear
fromDate: today];
components.year = [year integerValuel;

[self getTheEventsWithComponents:components
withCompletion:self.loadTableBlock];

So...

Why are they so useful ?

e They reduce the amount of code you need to
write, which reduces the amount of code you
need to maintain and debug.

e Communication with blocks helps maintain a
high level of encapsulation while keeping your
code readable and concise.

What are common use cases ?

e Many animation related methods take block arguments.

e Often used in networking apis, sorting / mapping functions,

and multithreading.

e As complition blocks they can let you know when a long
operation has come to an end, or act as callbacks.

What can | do with blocks?

e (Pass a block as a parameter / argument
to a method.

® Store a block in a local variable,
or a property as well.

® You can also pass additional
arguments to the block itself.

® They can also have a return value!!!

As a method parameter:

-(void)doSmtWithBlock: (returnType (*)(parameterTypes))blockName;

As an argument to a method call:

[someObject doSmtWithBlock: *returnType (parameters) {...}I;

What can | do with blocks?

® Pass a block as an parameter / argument to a method.
R

o Store a block in a local variable,
kor a property as well.

® You can also pass additional
arguments to the block itself.

® They can also have a return value!!!

® And of course you can nest them...

As a local variable:

returnType (*blockName)(parameterTypes) = *returnType(parameters) {...};

As a property:

@property (nonatomic, copy) returnType (*blockName)(parameterTypes);

What can | do with blocks?

® Pass a block as an parameter / argument to a method.

® Store a block in a local variable,
or a property as well.

(" PP
e | You can also pass additional

arguments to the block itself.
g ,

® They can also have a return value!!!

® And of course you can nest them...

What can | do with blocks?

® Pass a block as an parameter / argument to a method.

® Store a block in a local variable,
or a property as well.

® You can also pass additional
arguments to the block itself.

o [They can also have a return value!!!]

® And of course you can nest them...

(returnType (*)(parameterTypes))blockName,;

(parameter)

returnType (“blockName)(parameterTypes);

(var declaration)

[Obj methodWithargument: " retu rnlype (parameterS) { : }]

(argument)

What can | do with blocks?

® Pass a block as an parameter / argument to a method.

® Store a block in a local variable,
or a property as well.

® You can also pass additional
arguments to the block itself.

® They can also have a return value!!!

o [And of course you can nest them...]

What other languages
support closures ?

Well... ALOT!

SWIft ..., closure
Ruby ..., lambda
Java ... lambda
Javascript lambda

C (some libraries) calback

CH o, delegate
CH+ function obj

And many other languages closure!!!

Most common
pitfall

__block NSBlockOperation *operation [[NSBlockOperation alloc] init];

MMVoidBlock thumbnailOperationBlock = ~{

if (l!operation.isCancelled) {

\ workerBlock();

[selfl.thumbnailOperationList removeObjectForKey:keyl;
};

[operation addExecutionBlock:thumbnailOperationBlock];

p

Book

.

@property NSArray * pages;

J

strnng>
[

strong

Page B

@property Book * fromBook;

4 J

__block NSBlockOperation xoperation = [[NSBlockOperation alloc] init];

[_uweak typeof (self)weakSelf = self;]

MMVoidBlock thumbnailOperationBlock = ~{
if ('operation.isCancelled) {
workerBlock();
}

[weakSelf.thumbnailOperationList removeObjectForKey:keyl];
ki

[operation addExecutionBlock:thumbnailOperationBlock];

__block NSBlockOperation xoperation = [[NSBlockOperation alloc] init];

__weak typeof(self) weakSelf = self;

| _weak typeof(operation) weakOp = operation;

MMVoidBlock thumbnailOperationBlock = ~{
if ('!'weakOp.isCancelled) {
workerBlock():
}

[weakSelf.thumbnailOperationList removeObjectForKey:keyl;

};

[operation addExecutionBlock:thumbnailOperationBlock];

RECAP

So, a closure is basically a

snapshot of the stack,

at the moment in which

It’s created.

