
Closures
aka… _blocks!

“STRAIGHT & FORWARD”: 1) take a chunk of code,
2) enclose it in a closure!

POWER TO THE
 CLOSURES !

- They capture the state !!!
(that is: local variables)

- Not only you can store a
chunk of code

- But also you can preserve
access to the all SCOPE !!!

This is another method!!!

Another method => Another scope

So…

 F.A.Q.

● They reduce the amount of code you need to
write, which reduces the amount of code you
need to maintain and debug.

● Communication with blocks helps maintain a
high level of encapsulation while keeping your
code readable and concise.

Why are they so useful ?

What are common use cases ?

● Many animation related methods take block arguments.

● Often used in networking apis, sorting / mapping functions,

and multithreading.

● As complition blocks they can let you know when a long
operation has come to an end, or act as callbacks.

● Pass a block as a parameter / argument
to a method.

● Store a block in a local variable,
or a property as well.

● You can also pass additional
arguments to the block itself.

● They can also have a return value!!!

● And of course you can nest them...

What can I do with blocks?

As a method parameter:

 -(void)doSmtWithBlock: (returnType (^)(parameterTypes))blockName;

As an argument to a method call:

 [someObject doSmtWithBlock: ^returnType (parameters) {...}];

What can I do with blocks?
● Pass a block as an parameter / argument to a method.

● Store a block in a local variable,
or a property as well.

● You can also pass additional
arguments to the block itself.

● They can also have a return value!!!

● And of course you can nest them...

 As a local variable:

 returnType (^blockName)(parameterTypes) = ^returnType(parameters) {...};

As a property:

 @property (nonatomic, copy) returnType (^blockName)(parameterTypes);

What can I do with blocks?
● Pass a block as an parameter / argument to a method.

● Store a block in a local variable,
or a property as well.

● You can also pass additional
arguments to the block itself.

● They can also have a return value!!!

● And of course you can nest them...

What can I do with blocks?
● Pass a block as an parameter / argument to a method.

● Store a block in a local variable,
or a property as well.

● You can also pass additional
arguments to the block itself.

● They can also have a return value!!!

● And of course you can nest them...

(returnType (^)(parameterTypes))blockName;

 returnType (^blockName)(parameterTypes);

[Obj methodWithargument:^returnType (parameters) {...}];

(parameter)

(var declaration)

(argument)

What can I do with blocks?
● Pass a block as an parameter / argument to a method.

● Store a block in a local variable,
or a property as well.

● You can also pass additional
arguments to the block itself.

● They can also have a return value!!!

● And of course you can nest them...

What other languages
support closures ?

Well… A LOT!!!

● Objective-C ………………. block
● Swift ………………………. closure
● Ruby …………………….... lambda
● Java ………………………. lambda
● Javascript ………………… lambda
● C (some libraries) ..……… calback
● C# ……………………….... delegate
● C++ ……………………….. function obj

And many other languages …….……… closure!!!

Most common
pitfall

RECAP

So, a closure is basically a

snapshot of the stack,

at the moment in which

it’s created.

